**Auteur :** Heinz-Otto Kreiss

**la langue :** en

**Éditeur:** SIAM

**Date de sortie :** 2004-01-01

Initial-Boundary Value Problems and the Navier-Stokes Equations gives an introduction to the vast subject of initial and initial-boundary value problems for PDEs. Applications to parabolic and hyperbolic systems are emphasized in this text. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The book explains the principles of these subjects. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. Audience: when the book was written, the main intent was to write a text on initial-boundary value problems that was accessible to a rather wide audience. Functional analytical prerequisites were kept to a minimum or were developed in the book. Boundary conditions are analyzed without first proving trace theorems, and similar simplifications have been used throughout. This book continues to be useful to researchers and graduate students in applied mathematics and engineering.

**Auteur :** Giovanni P. Galdi

**la langue :** en

**Éditeur:** Springer Science & Business Media

**Date de sortie :** 2013-03-14

Undoubtedly, the Navier-Stokes equations are of basic importance within the context of modern theory of partial differential equations. Although the range of their applicability to concrete problems has now been clearly recognised to be limited, as my dear friend and bright colleague K.R. Ra jagopal has showed me by several examples during the past six years, the mathematical questions that remain open are of such a fascinating and challenging nature that analysts and applied mathematicians cannot help being attracted by them and trying to contribute to their resolution. Thus, it is not a coincidence that over the past ten years more than seventy sig nificant research papers have appeared concerning the well-posedness of boundary and initial-boundary value problems. In this monograph I shall perform a systematic and up-to-date investiga tion of the fundamental properties of the Navier-Stokes equations, including existence, uniqueness, and regularity of solutions and, whenever the region of flow is unbounded, of their spatial asymptotic behavior. I shall omit other relevant topics like boundary layer theory, stability, bifurcation, de tailed analysis of the behavior for large times, and free-boundary problems, which are to be considered "advanced" ones. In this sense the present work should be regarded as "introductory" to the matter.

**Auteur :** O. A. Ladyzhenskaya

**la langue :** en

**Éditeur:** American Mathematical Soc.

**Date de sortie :** 1991

This collection contains papers on the theory of quasilinear elliptic and parabolic equations, perturbation theory for the Schrodinger operator with a periodic potential, spectral properties of the abstract scattering matrix, the properties of solutions of linear time-dependent problems in solving problems of the dynamics of a viscous fluid with free (unknown) boundaries, the theory of dynamical systems and attractors generated by initial-boundary value problems for the equations of motion of linear viscoelastic fluids, and the differential properties of solutions of variational problems of the mechanics of viscoplastic media.

**Auteur :** John Groves Heywood

**la langue :** en

**Éditeur:** World Scientific

**Date de sortie :** 1998

This volume collects the articles presented at the Third International Conference on ?The Navier-Stokes Equations: Theory and Numerical Methods?, held in Oberwolfach, Germany. The articles are important contributions to a wide variety of topics in the Navier-Stokes theory: general boundary conditions, flow exterior to an obstacle, conical boundary points, the controllability of solutions, compressible flow, non-Newtonian flow, magneto-hydrodynamics, thermal convection, the interaction of fluids with elastic solids, the regularity of solutions, and Rothe's method of approximation.

**Auteur :** S.N. Antontsev

**la langue :** en

**Éditeur:** Elsevier

**Date de sortie :** 1989-12-18

The objective of this book is to report the results of investigations made by the authors into certain hydrodynamical models with nonlinear systems of partial differential equations. The investigations involve the results concerning Navier-Stokes equations of viscous heat-conductive gas, incompressible nonhomogeneous fluid and filtration of multi-phase mixture in a porous medium. The correctness of the initial boundary-value problems and the qualitative properties of solutions are also considered. The book is written for those who are interested in the theory of nonlinear partial differential equations and their applications in mechanics.

**Auteur :** Bertil Gustafsson

**la langue :** en

**Éditeur:** John Wiley & Sons

**Date de sortie :** 1995

Time dependent problems frequently pose challenges in areas of science and engineering dealing with numerical analysis, scientific computation, mathematical models, and most importantly—numerical experiments intended to analyze physical behavior and test design. Time Dependent Problems and Difference Methods addresses these various industrial considerations in a pragmatic and detailed manner, giving special attention to time dependent problems in its coverage of the derivation and analysis of numerical methods for computational approximations to Partial Differential Equations (PDEs). The book is written in two parts. Part I discusses problems with periodic solutions; Part II proceeds to discuss initial boundary value problems for partial differential equations and numerical methods for them. The problems with periodic solutions have been chosen because they allow the application of Fourier analysis without the complication that arises from the infinite domain for the corresponding Cauchy problem. Furthermore, the analysis of periodic problems provides necessary conditions when constructing methods for initial boundary value problems. Much of the material included in Part II appears for the first time in this book. The authors draw on their own interests and combined extensive experience in applied mathematics and computer science to bring about this practical and useful guide. They provide complete discussions of the pertinent theorems and back them up with examples and illustrations. For physical scientists, engineers, or anyone who uses numerical experiments to test designs or to predict and investigate physical phenomena, this invaluable guide is destined to become a constant companion. Time Dependent Problems and Difference Methods analysts, mathematical modelers, and graduate students of applied mathematics and scientific computations.